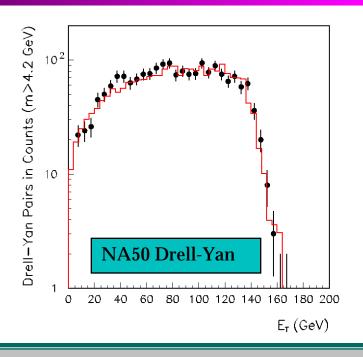
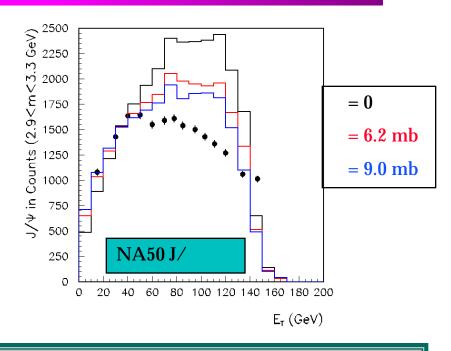

Initial State Dependence of J/ and Drell-Yan Yields in Nucleus-Nucleus Collisions

Michael J. Bennett, Los Alamos National Lab and

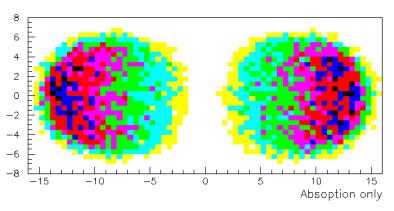
James L. Nagle, Columbia U.

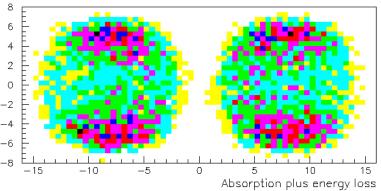

"Anomalous" J/ Suppression


NA38, NA50 J/ to DY ratio

- Yields from p-A and A-A (through S) described by absorption cross section of 6-8 mb--consistent with predictions for c-cbar-g color octet state
- Yields from Pb-Pb collisions display absorption beyond this level, socalled "anomalous suppression"
- QGP?? or conventional explanation? e.g. comover absorption, energy loss
- Need to look at J/, DY individually, as a function of centrality

Comparison to Simple Glauber

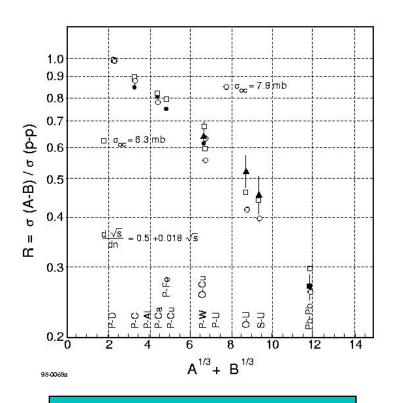




- Simple Glauber model, with production from all N-N collisions equally likely
- E_T = constant * Wounded nucleons, smeared by 94% / E resolution
- Drell-Yan yields are fit very well
- J/ yields are not fit well with absorption cross sections from 6-9 mb

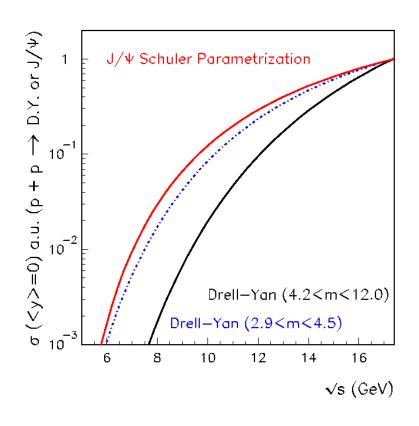
Geometry of Energy Loss

Absorption only

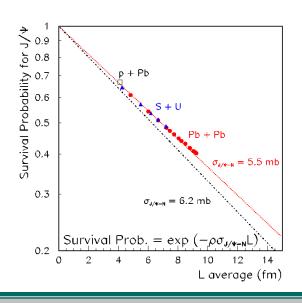


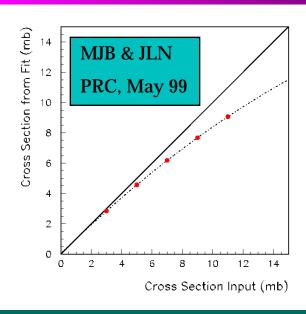
Absorption + Energy Loss

- Nucleons lose energy as they traverse the colliding nucleus
- Production of J/ and Drell-Yan have steep energy dependence
- Affects J/ and DY differently
- Reduces total yield
- Reduces Cronin effect, changes
 p_t spectrum
- Mimics QGP signal


Energy Loss in Min Bias Collisions

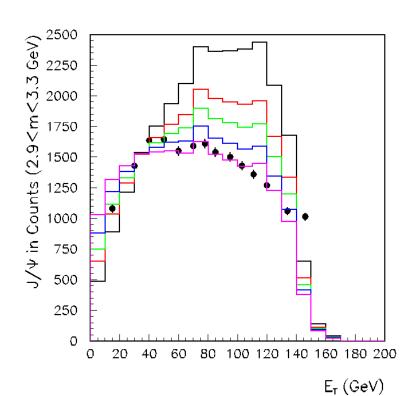
Frankel & Frati, hep-ph/9710532


- J/ yield per N-N Collision, plotted against Mean Number of N-N Collisions
- Absorption only gives simple exponential
- Energy loss suppresses from simple exponential
- Want to look at detailed centrality dependence, for both J/ and Drell-Yan


The Model and Parameters

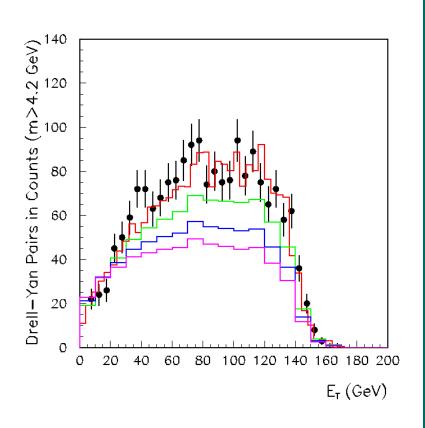
- Glauber Formalism, using 30mb
 N-N cross section
- Disregarding energy loss, all N-N Collisions contribute equally
- J/ produced "at rest", absorption cross section 7.1 mb
- Nucleons lose a fraction of momentum in each collision
- Energy dependent production of J/ and DY

The "L Parameter" and Absorption Fits



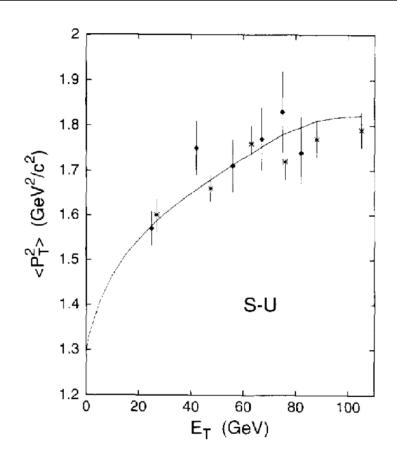
- At fixed impact parameter, J/ path lengths vary widely; each centrality bin represents a variety of impact parameters
- A simple average over path lengths underestimates absorption cross section; using an iterative process, a refit gives 7.1 ± 0.6 mb
- Consistent with an fit with different methodology $(7.3 \pm 0.6 \text{ mb}, \text{Kharzeev et al, ZPC74, 307 (1997)}$

Time Scales for Energy Loss

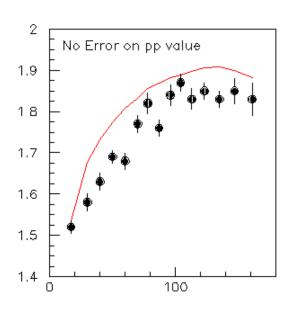

- At CERN energies, nuclei cross in ~0.1 fm/c
- Most energy loss is via soft interactions, with a time scale of a few fm/c
- Stopping in p-A collisions suggest nucleons lose ~40% of their momentum per collision at t=
- Some fraction of this energy loss is at short time scale, treat as a variable parameter

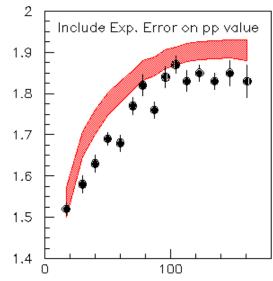
J/ Yields with Energy Loss

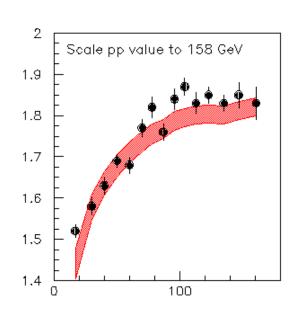
- Several values of Energy Loss 0%, 5%, 10% and 15% momentum per collision (0%, 10%, 20%, 30% of total t= loss)
- Normalization chosen to give best fit in lowest two E_T bins
- Highest Energy Loss matches spectral shape well


Drell-Yan Yields with Energy Loss

- Several values of Energy Loss
 0%, 5%, 10% and 15%
 momentum per collision
- Normalization chosen to give best fit in lowest E_T bins
- Hard to reconcile any energy loss with data
- Is it reasonable to assume same energy loss is applicable for both J/ and DY?

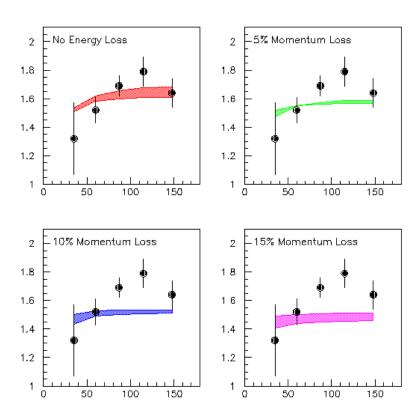

Cronin Effect

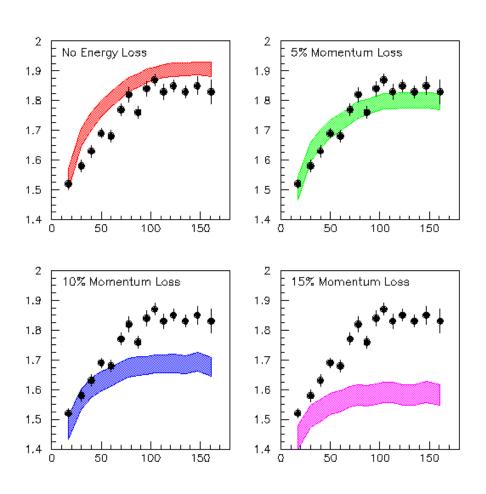

$$< p_t^2 >_N = < p_t^2 >_{pp} + N - p_t^2$$



- Prior N-N Collisions broaden transverse momentum ("Cronin effect")
- J/ : $< p_t^2 >_{pp} = 1.23 \pm 0.05 \text{ GeV}^2$ (NA3); $p_t^2 = 0.125 \text{ GeV}^2$ (fit to pA + AA, Kharzeev et al, PLB 405, 14 (1997))
- DY: $\langle p_t^2 \rangle_{pp} = 1.38 \pm 0.07 \text{ GeV}^2$ (NA3); $p_t^2 = 0.056 \text{ GeV}^2$ (fit to pA + AA, Gavin and Gyulassy, PLB 214, 241 (1988))

Is QGP necessary to fit $J/ <p_t^2>?$




- Must take error in pp data into account
- pp data taken at 200 GeV; scaling to 158 GeV (linear in s) reduces pp "intercept" to 1.13 GeV²--changes normalization, not shape
- Fermi momentum?---some uncertainty in normalization

Drell-Yan <p_t²> with Energy Loss

- Several values of Energy Loss 0%, 5%, 10% and 15% momentum per collision
- Spectra not very sensitive to energy loss

J/ <pt2> with Energy Loss

- Several values of Energy Loss
 0%, 5%, 10% and 15%
 momentum per collision
- Large values of Energy Loss do not fit data
- Not consistent with Energy Loss required to fit J/ yields

Conclusions

- Fits using a linearly averaged "L parameter" underestimate the absorption cross section
- Given normalization uncertainty, $J/ < p_t^2 > spectrum does not definitively rule out normal hadronic scenario$
- Adding Energy Loss can fit the J/ yield shape ...BUT
- Energy Loss cannot consistently fit both J/ and Drell-Yan yields
- Energy Loss cannot consistently fit both J/ yields and J/ <p_t²> spectra
- Energy Loss does not appear to explain "anomalous" J/ suppression